Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 321
Filtrar
1.
Front Endocrinol (Lausanne) ; 15: 1341546, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38654930

RESUMO

Objective: This study aimed to quantify the severity of metabolic syndrome(MetS) and investigate its association with cardiovascular disease(CVD) risk on Chinese adults. Methods: 13,500 participants from the Zhejiang Adult Chronic Disease Study were followed up between 2010 and 2021. A continuous MetS severity score derived from the five components of MetS was used to quantify MetS severity, and the association between MetS severity and the risk of incident CVD was assessed using Cox proportional hazard and restricted cubic spline regression. Results: Both the presence and severity of MetS were strongly associated with CVD risk. MetS was related to an increased risk of CVD (hazard ratio(HR):1.700, 95% confidence interval(CI): 1.380-2.094). Compared with the hazard ratio for CVD in the lowest quartile of the MetS severity score, that in the second, third, and highest quartiles were 1.812 (1.329-2.470), 1.746 (1.265-2.410), and 2.817 (2.015-3.938), respectively. A linear and positive dose-response relationship was observed between the MetS severity and CVD risk (P for non-linearity = 0.437). Similar results were found in various sensitivity analyses. Conclusion: The MetS severity score was significantly associated with CVD risk. Assessing MetS severity and further ensuring intervention measures according to the different severities of MetS may be more useful in preventing CVD.


Assuntos
Doenças Cardiovasculares , Síndrome Metabólica , Índice de Gravidade de Doença , Humanos , Síndrome Metabólica/epidemiologia , Síndrome Metabólica/complicações , Masculino , Doenças Cardiovasculares/epidemiologia , Feminino , Pessoa de Meia-Idade , Estudos Longitudinais , Adulto , China/epidemiologia , Fatores de Risco , Idoso , Estudos de Coortes , Seguimentos , Incidência , População do Leste Asiático
2.
Front Mol Biosci ; 11: 1332090, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38516185

RESUMO

Background: Mycophenolate mofetil (MMF), the morpholinoethyl ester of mycophenolic acid, is widely used for maintenance immunosuppression in transplantation. The gastrointestinal toxicity of MMF has been widely uncovered. However, the comprehensive metabolic analysis of MMF-induced toxicity is lacking. This study is aimed to ascertain the metabolic changes after MMF administration in mice. Methods: A total of 700 mg MMF was dissolved in 7 mL dimethyl sulfoxide (DMSO), and then 0.5 mL of mixture was diluted with 4.5 mL of saline (100 mg/kg). Mice in the treatment group (n = 9) were given MMF (0.1 mL/10 g) each day via intraperitoneal injection lasting for 2 weeks, while those in the control group (n = 9) received the same amount of blank solvent (DMSO: saline = 1:9). Gas chromatography-mass spectrometry was utilized to identify the metabolic profiling in serum samples and multiple organ tissues of mice. The potential metabolites were identified using orthogonal partial least squares discrimination analysis. Meanwhile, we used the MetaboAnalyst 5.0 (http://www.metaboanalyst.ca) and Kyoto Encyclopedia of Genes and Genomes database (http://www.kegg.jp) to depict the metabolic pathways. The percentages of lymphocytes in spleens were assessed by multiparameter flow cytometry analysis. Results: Compared to the control group, we observed that MMF treatment induced differential expression of metabolites in the intestine, hippocampus, lung, liver, kidney, heart, serum, and cortex tissues. Subsequently, we demonstrated that multiple amino acids metabolism and fatty acids biosynthesis were disrupted following MMF treatment. Additionally, MMF challenge dramatically increased CD4+ T cell percentages but had no significant influences on other types of lymphocytes. Conclusion: MMF can affect the metabolism in various organs and serum in mice. These data may provide preliminary judgement for MMF-induced toxicity and understand the metabolic mechanism of MMF more comprehensively.

3.
Glia ; 72(6): 1054-1066, 2024 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-38450799

RESUMO

Neurons in sensory ganglia are wrapped completely by satellite glial cells (SGCs). One putative function of SGCs is to regulate the neuronal microenvironment, but this role has received only little attention. In this study we investigated whether the SGC envelope serves a barrier function and how SGCs may control the neuronal microenvironment. We studied this question on short-term (<24 h) cell cultures of dorsal root ganglia and trigeminal ganglia from adult mice, which contain neurons surrounded with SGCs, and neurons that are not. Using calcium imaging, we measured neuronal responses to molecules with established actions on sensory neurons. We found that neurons surrounded by SGCs had a smaller response to molecules such as adenosine triphosphate (ATP), glutamate, GABA, and bradykinin than neurons without glial cover. When we inhibited the activity of NTPDases, which hydrolyze the ATP, and also when we inhibited the glutamate and GABA transporters on SGCs, this difference in the neuronal response was no longer observed. We conclude that the SGC envelope does not hinder diffusional passage, but acts as a metabolic barrier that regulates the neuronal microenvironment, and can protect the neurons and modulate their activity.


Assuntos
Neuroglia , Neurônios , Animais , Camundongos , Neuroglia/metabolismo , Gânglios Sensitivos , Gânglios Espinais , Glutamatos/metabolismo , Trifosfato de Adenosina/metabolismo , Células Satélites Perineuronais/metabolismo
4.
Br J Anaesth ; 132(4): 746-757, 2024 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-38310069

RESUMO

BACKGROUND: The mechanisms for spinal cord stimulation (SCS) to alleviate chronic pain are only partially known. We aimed to elucidate the roles of adenosine A1 and A3 receptors (A1R, A3R) in the inhibition of spinal nociceptive transmission by SCS, and further explored whether 2'-deoxycoformycin (dCF), an inhibitor of adenosine deaminase, can potentiate SCS-induced analgesia. METHODS: We used RNAscope and immunoblotting to examine the distributions of adora1 and adora3 expression, and levels of A1R and A3R proteins in the spinal cord of rats after tibial-spared nerve injury (SNI-t). Electrophysiology recording was conducted to examine how adenosine receptor antagonists, virus-mediated adora3 knockdown, and dCF affect SCS-induced inhibition of C-fibre-evoked spinal local field potential (C-LFP). RESULTS: Adora1 was predominantly expressed in neurones, whereas adora3 is highly expressed in microglial cells in the rat spinal cord. Spinal application of antagonists (100 µl) of A1R (8-cyclopentyl-1,3-dipropylxanthine [DPCPX], 50 µM) and A3R (MRS1523, 200 nM) augmented C-LFP in SNI-t rats (DPCPX: 1.39 [0.18] vs vehicle: 0.98 [0.05], P=0.046; MRS1523: 1.21 [0.07] vs vehicle: 0.91 [0.03], P=0.002). Both drugs also blocked inhibition of C-LFP by SCS. Conversely, dCF (0.1 mM) enhanced SCS-induced C-LFP inhibition (dCF: 0.60 [0.04] vs vehicle: 0.85 [0.02], P<0.001). In the behaviour study, dCF (100 nmol 15 µl-1, intrathecal) also enhanced inhibition of mechanical hypersensitivity by SCS in SNI-t rats. CONCLUSIONS: Spinal A1R and A3R signalling can exert tonic suppression and also contribute to SCS-induced inhibition of spinal nociceptive transmission after nerve injury. Inhibition of adenosine deaminase may represent a novel adjuvant pharmacotherapy to enhance SCS-induced analgesia.


Assuntos
Adenosina Desaminase , Estimulação da Medula Espinal , Ratos , Animais , Adenosina/farmacologia , Medula Espinal , Dor
5.
Mol Med Rep ; 29(4)2024 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-38391013

RESUMO

Following the publication of this paper, it was drawn to the Editor's attention by a concerned reader that certain of the Transwell invasion and migration assay data shown in Fig. 1B and C were strikingly similar to data appearing in different form in other articles written by different authors at different research institutes, which had either already been published or were under consideration for publication at around the same time. Owing to the fact that the contentious data in the above article had already been published prior to its submission to Molecular Medicine Reports, the Editor has decided that this paper should be retracted from the Journal. The authors were asked for an explanation to account for these concerns, but the Editorial Office did not receive a reply. The Editor apologizes to the readership for any inconvenience caused. [Molecular Medicine Reports 17: 4203­4212, 2018; DOI: 10.3892/mmr.2018.8444].

6.
Mol Neurobiol ; 61(3): 1845-1859, 2024 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-37792259

RESUMO

Chronic pain is a significant public health issue that is often refractory to existing therapies. Here we use a multiomic approach to identify cis-regulatory elements that show differential chromatin accessibility and reveal transcription factor (TF) binding motifs with functional regulation in the rat dorsal root ganglion (DRG), which contain cell bodies of primary sensory neurons, after nerve injury. We integrated RNA-seq to understand how differential chromatin accessibility after nerve injury may influence gene expression. Using TF protein arrays and chromatin immunoprecipitation-qPCR, we confirmed C/EBPγ binding to a differentially accessible sequence and used RNA-seq to identify processes in which C/EBPγ plays an important role. Our findings offer insights into TF motifs that are associated with chronic pain. These data show how interactions between chromatin landscapes and TF expression patterns may work together to determine gene expression programs in rat DRG neurons after nerve injury.


Assuntos
Dor Crônica , Neuralgia , Ratos , Animais , Ratos Sprague-Dawley , Dor Crônica/metabolismo , Neuralgia/metabolismo , Células Receptoras Sensoriais/metabolismo , Cromatina/metabolismo , Gânglios Espinais/metabolismo
7.
Cereb Cortex ; 34(1)2024 Jan 14.
Artigo em Inglês | MEDLINE | ID: mdl-37885127

RESUMO

Brain age is a promising biomarker for predicting chronological age based on brain imaging data. Although movie and resting-state functional MRI techniques have attracted much research interest for the investigation of brain function, whether the 2 different imaging paradigms show similarities and differences in terms of their capabilities and properties for predicting brain age remains largely unexplored. Here, we used movie and resting-state functional MRI data from 528 participants aged from 18 to 87 years old in the Cambridge Centre for Ageing and Neuroscience data set for functional network construction and further used elastic net for age prediction model building. The connectivity properties of movie and resting-state functional MRI were evaluated based on the connections supporting predictive model building. We found comparable predictive abilities of movie and resting-state connectivity in estimating brain age of individuals, as evidenced by correlation coefficients of 0.868 and 0.862 between actual and predicted age, respectively. Despite some similarities, notable differences in connectivity properties were observed between the predictive models using movie and resting-state functional MRI data, primarily involving components of the default mode network. Our results highlight that both movie and resting-state functional MRI are effective and promising techniques for predicting brain age. Leveraging its data acquisition advantages, such as improved child and patient compliance resulting in reduced motion artifacts, movie functional MRI is emerging as an important paradigm for studying brain function in pediatric and clinical populations.


Assuntos
Mapeamento Encefálico , Imageamento por Ressonância Magnética , Humanos , Criança , Adolescente , Adulto Jovem , Adulto , Pessoa de Meia-Idade , Idoso , Idoso de 80 Anos ou mais , Imageamento por Ressonância Magnética/métodos , Mapeamento Encefálico/métodos , Filmes Cinematográficos , Encéfalo/diagnóstico por imagem , Envelhecimento , Rede Nervosa , Descanso
8.
Neurochem Res ; 49(2): 507-518, 2024 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-37955815

RESUMO

Previous studies suggested that postsynaptic neuroligin-2 may shift from inhibitory toward excitatory function under pathological pain conditions. We hypothesize that nerve injury may increase the expression of spinal MAM-domain GPI-anchored molecule 1 (MDGA1), which can bind to neuroligin-2 and thereby, alter its interactions with postsynaptic scaffolding proteins and increase spinal excitatory synaptic transmission, leading to neuropathic pain. Western blot, immunofluorescence staining, and co-immunoprecipitation studies were conducted to examine the critical role of MDGA1 in the lumbar spinal cord dorsal horn in rats after spinal nerve ligation (SNL). Small interfering ribonucleic acids (siRNAs) targeting MDGA1 were used to examine the functional roles of MDGA1 in neuropathic pain. Protein levels of MDGA1 in the ipsilateral dorsal horn were significantly upregulated at day 7 post-SNL, as compared to that in naïve or sham rats. The increased levels of GluR1 in the synaptosomal membrane fraction of the ipsilateral dorsal horn tissues at day 7 post-SNL was normalized to near sham level by pretreatment with intrathecal MDGA1 siRNA2308, but not scrambled siRNA or vehicle. Notably, knocking down MDGA1 with siRNAs reduced the mechanical and thermal pain hypersensitivities, and inhibited the increased excitatory synaptic interaction between neuroligin-2 with PSD-95, and prevented the decreased inhibitory postsynaptic interactions between neuroligin-2 and Gephyrin. Our findings suggest that SNL upregulated MDGA1 expression in the dorsal horn, which contributes to the pain hypersensitivity through increasing the net excitatory interaction mediated by neuroligin-2 and surface delivery of GluR1 subunit in dorsal horn neurons.


Assuntos
Neuralgia , Ratos , Animais , Regulação para Cima , Ratos Sprague-Dawley , Corno Dorsal da Medula Espinal/metabolismo , Células do Corno Posterior/metabolismo , Neuralgia/patologia , Nervos Espinhais , RNA Interferente Pequeno/metabolismo , Hiperalgesia/metabolismo , Medula Espinal/patologia
9.
Chemosphere ; 349: 140807, 2024 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-38029937

RESUMO

Permanganate is a common preoxidant applied in water treatment to remove organic pollutants and to reduce the formation of disinfection by-products. However, the effect of permanganate preoxidation on the transformation of dissolved effluent organic matter (dEfOM) and on the formation of unknown chlorinated disinfection by-products (Cl-DBPs) during chlorination remains unknown at molecular level. In this work, the molecular changes of dEfOM during permanganate preoxidation and subsequent chlorination were characterized using Fourier transform ion cyclotron resonance mass spectrometry (FT-ICR MS). Permanganate preoxidation was found to decrease the DBE (double bond equivalent) and AImod (modified aromaticity index) of the dEfOM. The identity and fate of over 400 unknown Cl-DBPs during KMnO4-chlorine treatment were investigated. Most Cl-DBPs and the precursors were found to be highly unsaturated aliphatic and phenolic compounds. The Cl-DBPs precursors with lower H/C and lower O/C were preferentially removed by permanganate preoxidation. Additionally, permanganate preoxidation decreased the number of unknown Cl-DBPs by 30% and intensity of unknown Cl-DBPs by 25%. One-chlorine-containing DBPs were the major Cl-DBPs and had more CH2 groups and higher DBEw than Cl-DBPs containing two and three chlorine atoms. 60% of the Cl-DBPs formation was attributed to substitution reactions (i.e., +Cl-H, +2Cl-2H, +3Cl-3H, +ClO-H, +Cl2O3-2H). This work provides detailed molecular level information on the efficacy of permanganate preoxidation on the control of overall Cl-DBPs formation during chlorination.


Assuntos
Desinfetantes , Poluentes Químicos da Água , Purificação da Água , Desinfecção/métodos , Matéria Orgânica Dissolvida , Halogenação , Cloro/análise , Purificação da Água/métodos , Poluentes Químicos da Água/análise , Desinfetantes/química
10.
J Clin Invest ; 134(3)2024 02 01.
Artigo em Inglês | MEDLINE | ID: mdl-38015636

RESUMO

Current treatments for neurodegenerative diseases and neural injuries face major challenges, primarily due to the diminished regenerative capacity of neurons in the mammalian CNS as they mature. Here, we investigated the role of Ezh2, a histone methyltransferase, in regulating mammalian axon regeneration. We found that Ezh2 declined in the mouse nervous system during maturation but was upregulated in adult dorsal root ganglion neurons following peripheral nerve injury to facilitate spontaneous axon regeneration. In addition, overexpression of Ezh2 in retinal ganglion cells in the CNS promoted optic nerve regeneration via both histone methylation-dependent and -independent mechanisms. Further investigation revealed that Ezh2 fostered axon regeneration by orchestrating the transcriptional silencing of genes governing synaptic function and those inhibiting axon regeneration, while concurrently activating various factors that support axon regeneration. Notably, we demonstrated that GABA transporter 2, encoded by Slc6a13, acted downstream of Ezh2 to control axon regeneration. Overall, our study underscores the potential of modulating chromatin accessibility as a promising strategy for promoting CNS axon regeneration.


Assuntos
Axônios , Traumatismos do Nervo Óptico , Animais , Camundongos , Axônios/metabolismo , Gânglios Espinais/metabolismo , Mamíferos , Regeneração Nervosa/genética , Traumatismos do Nervo Óptico/genética , Traumatismos do Nervo Óptico/metabolismo , Células Ganglionares da Retina/metabolismo
11.
Neural Regen Res ; 19(5): 1105-1111, 2024 May.
Artigo em Inglês | MEDLINE | ID: mdl-37862215

RESUMO

Human dental pulp stem cell transplantation has been shown to be an effective therapeutic strategy for spinal cord injury. However, whether the human dental pulp stem cell secretome can contribute to functional recovery after spinal cord injury remains unclear. In the present study, we established a rat model of spinal cord injury based on impact injury from a dropped weight and then intraperitoneally injected the rats with conditioned medium from human dental pulp stem cells. We found that the conditioned medium effectively promoted the recovery of sensory and motor functions in rats with spinal cord injury, decreased expression of the microglial pyroptosis markers NLRP3, GSDMD, caspase-1, and interleukin-1ß, promoted axonal and myelin regeneration, and inhibited the formation of glial scars. In addition, in a lipopolysaccharide-induced BV2 microglia model, conditioned medium from human dental pulp stem cells protected cells from pyroptosis by inhibiting the NLRP3/caspase-1/interleukin-1ß pathway. These results indicate that conditioned medium from human dental pulp stem cells can reduce microglial pyroptosis by inhibiting the NLRP3/caspase-1/interleukin-1ß pathway, thereby promoting the recovery of neurological function after spinal cord injury. Therefore, conditioned medium from human dental pulp stem cells may become an alternative therapy for spinal cord injury.

12.
World J Clin Oncol ; 14(10): 357-372, 2023 Oct 24.
Artigo em Inglês | MEDLINE | ID: mdl-37970111

RESUMO

BACKGROUND: Burkitt lymphoma (BL) is an exceptionally aggressive malignant neoplasm that arises from either the germinal center or post-germinal center B cells. Patients with BL often present with rapid tumor growth and require high-intensity multi-drug therapy combined with adequate intrathecal chemotherapy prophylaxis, however, a standard treatment program for BL has not yet been established. It is important to identify biomarkers for predicting the prognosis of BLs and discriminating patients who might benefit from the therapy. Microarray data and sequencing information from public databases could offer opportunities for the discovery of new diagnostic or therapeutic targets. AIM: To identify hub genes and perform gene ontology (GO) and survival analysis in BL. METHODS: Gene expression profiles and clinical traits of BL patients were collected from the Gene Expression Omnibus database. Weighted gene co-expression network analysis (WGCNA) was applied to construct gene co-expression modules, and the cytoHubba tool was used to find the hub genes. Then, the hub genes were analyzed using GO and Kyoto Encyclopedia of Genes and Genomes analysis. Additionally, a Protein-Protein Interaction network and a Genetic Interaction network were constructed. Prognostic candidate genes were identified through overall survival analysis. Finally, a nomogram was established to assess the predictive value of hub genes, and drug-gene interactions were also constructed. RESULTS: In this study, we obtained 8 modules through WGCNA analysis, and there was a significant correlation between the yellow module and age. Then we identified 10 hub genes (SRC, TLR4, CD40, STAT3, SELL, CXCL10, IL2RA, IL10RA, CCR7 and FCGR2B) by cytoHubba tool. Within these hubs, two genes were found to be associated with OS (CXCL10, P = 0.029 and IL2RA, P = 0.0066) by survival analysis. Additionally, we combined these two hub genes and age to build a nomogram. Moreover, the drugs related to IL2RA and CXCL10 might have a potential therapeutic role in relapsed and refractory BL. CONCLUSION: From WGCNA and survival analysis, we identified CXCL10 and IL2RA that might be prognostic markers for BL.

13.
J Neurosurg ; : 1-8, 2023 Nov 17.
Artigo em Inglês | MEDLINE | ID: mdl-37976497

RESUMO

OBJECTIVE: Jugular foramen schwannomas (JFSs) are rarely seen, benign tumors with slow growth. Today, management options for JFSs include observation, surgery, and radiation. However, the optimal treatment strategy remains controversial. Stereotactic radiosurgery serves as a minimally invasive alternative or adjuvant therapeutic regimen of microsurgery. Gamma Knife radiosurgery is suitable for patients with JFS who have small- and medium-sized tumors and normal cranial nerve (CN) function. Hypofractionated stereotactic radiotherapy (HSRT) offers a potential radiobiological advantage and may result in better preservation of normal structures compared to single-fraction stereotactic radiosurgery. The aim of the article was to review the clinical and radiographic outcomes of patients with JFS who were treated using HSRT. METHODS: The authors retrospectively analyzed 74 patients with JFS who received HSRT between January 2009 and January 2020 in the authors' center. Among them, 53 patients were newly diagnosed with JFS, 19 patients had a previous history of microsurgical resection, and the other 2 patients underwent CyberKnife because of tumor recurrence after Gamma Knife radiosurgery. A total of 73 patients had preexisting CN symptoms and signs. The median tumor volume was 14.8 cm3 (range 0.5-41.2 cm3), and most of them (70.3%) were ≥ 10 cm3. The radiation dose regimen was prescribed depending on the tumor size, and more fractions were used in larger tumors. The median margin doses prescribed were 18.2 Gy/2 fractions, 21.0 Gy/3 fractions, and 21.6 Gy/4 fractions. RESULTS: The median follow-up was 103 months (range 18-158 months). After treatment, 42 (56.8%) patients had tumor regression, 27 (36.5%) patients had stable tumors, and 5 (6.8%) experienced tumor progression. Among them, MRI revealed that 1 patient had a complete response. Three patients received surgery at a median of 25 months because of tumor progression. One patient underwent ventriculoperitoneal shunt insertion for hydrocephalus that developed after HSRT independent of tumor progression. The 5-year progression-free survival rate was 93.2%. Preexisting cranial neuropathies improved in 46 patients, remained stable in 14, and worsened in 14. CONCLUSIONS: HSRT proved to be a safe and effective primary or adjuvant treatment strategy for JFSs, although 14 patients (18.9%) experienced some degree of delayed symptomatic deterioration posttreatment. This therapeutic option was demonstrated to provide both excellent tumor control and improvement in CN function.

14.
Trends Pharmacol Sci ; 44(12): 1009-1027, 2023 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-37977131

RESUMO

Despite the high prevalence of peripheral neuropathic pain (NP) conditions and significant progress in understanding its underlying mechanisms, the management of peripheral NP remains inadequate. Existing pharmacotherapies for NP act primarily on the central nervous system (CNS) and are often associated with CNS-related adverse effects, limiting their clinical effectiveness. Mounting preclinical evidence indicates that reducing the heightened activity in primary sensory neurons by targeting G-protein-coupled receptors (GPCRs), without activating these receptors in the CNS, relieves pain without central adverse effects. In this review, we focus on recent advancements in GPCR-mediated peripheral pain relief and discuss strategies to advance the development of more effective and safer therapies for peripheral NP by shifting from traditional CNS modulatory approaches toward selective targeting of GPCRs on primary sensory neurons.


Assuntos
Neuralgia , Humanos , Neuralgia/tratamento farmacológico , Células Receptoras Sensoriais , Sistema Nervoso Central , Receptores Acoplados a Proteínas G
15.
Beijing Da Xue Xue Bao Yi Xue Ban ; 55(5): 843-850, 2023 Oct 18.
Artigo em Chinês | MEDLINE | ID: mdl-37807738

RESUMO

OBJECTIVE: To investigate the imaging effect of a near-infrared fluorescent targeted probe ICG-NP41 on the neurovascular bundles (NVB) around the prostate in rats. METHODS: A near-infrared fluorescent targeted probe ICG-NP41 was synthesized. An animal model for NVB imaging was established using Sprague-Dawley rats (250-400 g). Experiments were conducted using a custom-built near-infrared windowⅡ(NIR-Ⅱ) small animal in vivo imaging system, and images collected were processed using ImageJ and Origin. The fluorescence signal data were statistically analyzed using GraphPad Prism. The signal-to-background ratio (SBR) for NVB was quantitatively calculated to explore the effective dosage and imaging time points. Finally, paraffin pathology sections and HE staining were performed on the imaging structures. RESULTS: Except for rats in the control group (n=2), right-sided NVB of the rats injected with ICG-NP41 (n=2 per group) were all observed in NIR-Ⅱ fluorescence mode 2 h and 4 h after administration. At 2 h and 4 h, average SBR of cavernous nerve in 2 mg/kg group in fluorescence mode was 1.651±0.142 and 1.619±0.110, respectively, both higher than that in white light mode (1.111±0.036), with no significant difference (P>0.05); average SBR of 4 mg/kg group in fluorescence mode were 1.168±0.066 and 1.219±0.118, respectively, both higher than that in white light mode (1.081±0.040), with no significant difference (P>0.05). At 2 h and 4 h, the average SBR of 2 mg/kg and 4 mg/kg groups in fluorescence mode were higher than that of the control group (SBR=1), the average SBR of the 2 mg/kg group was higher than that of the 4 mg/kg group, and all the above with no significant difference (P>0.05). The average diameter of the nerve measured by full width at half maxima method was about (178±15) µm. HE staining of paraffin sections showed the right major pelvic ganglion. CONCLUSION: The near-infrared fluorescent targeted probe ICG-NP41 can be used for real-time imaging of the NVB around the prostate in rats, providing a potential feasible solution for localizing NVB in real time during nerve-sparing radical prostatectomy.


Assuntos
Parafina , Próstata , Masculino , Ratos , Animais , Próstata/diagnóstico por imagem , Verde de Indocianina , Ratos Sprague-Dawley , Corantes Fluorescentes
16.
J Orthop Translat ; 42: 147-159, 2023 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-37823035

RESUMO

Chronic pain after spine surgery (CPSS) is often characterized by intractable low back pain and/or radiating leg pain, and has been reported in 8-40% of patients that received lumbar spine surgery. We conducted a literature search of PubMed, MEDLINE/OVID with a focus on studies about the etiology and treatments of CPSS and low back pain. Our aim was to provide a narrative review that would help us better understand the pathogenesis and current treatment options for CPSS. This knowledge will aid in the development of optimal strategies for managing postoperative pain symptoms and potentially curing the underlying etiologies. Firstly, we reviewed recent advances in the mechanistic study of CPSS, illustrated both structural (e.g., fibrosis and scaring) and non-structural factors (e.g., inflammation, neuronal sensitization, glial activation, psychological factor) causing CPSS, and highlighted those having not been given sufficient attention as the etiology of CPSS. Secondly, we summarized clinical evidence and therapeutic perspectives of CPSS. We also presented new insights about the treatments and etiology of CPSS, in order to raise awareness of medical staff in the identification and management of this complex painful disease. Finally, we discussed potential new targets for clinical interventions of CPSS and future perspectives of mechanistic and translational research. CPSS patients often have a mixed etiology. By reviewing recent findings, the authors advocate that clinicians shall comprehensively evaluate each case to formulate a patient-specific and multi-modal pain treatment, and importantly, consider an early intraoperative intervention that may decrease the risk or even prevent the onset of CPSS. Translational potential statement: CPSS remains difficult to treat. This review broadens our understanding of clinical therapies and underlying mechanisms of CPSS, and provides new insights which will aid in the development of novel mechanism-based therapies for not only managing the established pain symptoms but also preventing the development of CPSS.

17.
Int J Mol Sci ; 24(18)2023 Sep 06.
Artigo em Inglês | MEDLINE | ID: mdl-37762067

RESUMO

Patients who have undergone surgery in early life may be at elevated risk for suffering neuropathic pain in later life. The risk factors for this susceptibility are not fully understood. Here, we used a mouse chronic pain model to test the hypothesis that early exposure to the general anesthetic (GA) Isoflurane causes cellular and molecular alterations in dorsal spinal cord (DSC) and dorsal root ganglion (DRG) that produces a predisposition to neuropathic pain via an upregulation of the mammalian target of the rapamycin (mTOR) signaling pathway. Mice were exposed to isoflurane at postnatal day 7 (P7) and underwent spared nerve injury at P28 which causes chronic pain. Selected groups were treated with rapamycin, an mTOR inhibitor, for eight weeks. Behavioral tests showed that early isoflurane exposure enhanced susceptibility to chronic pain, and rapamycin treatment improved outcomes. Immunohistochemistry, Western blotting, and q-PCR indicated that isoflurane upregulated mTOR expression and neural activity in DSC and DRG. Accompanying upregulation of mTOR and rapamycin-reversible changes in chronic pain-associated markers, including N-cadherin, cAMP response element-binding protein (CREB), purinergic P2Y12 receptor, glial fibrillary acidic protein (GFAP) in DSC; and connexin 43, phospho-extracellular signal-regulated kinase (p-ERK), GFAP, Iba1 in DRG, were observed. We concluded that early GA exposure, at least with isoflurane, alters the development of pain circuits such that mice are subsequently more vulnerable to chronic neuropathic pain states.


Assuntos
Anestésicos Gerais , Dor Crônica , Isoflurano , Neuralgia , Animais , Camundongos , Dor Crônica/tratamento farmacológico , Modelos Animais de Doenças , Isoflurano/efeitos adversos , Mamíferos , Neuralgia/tratamento farmacológico , Transdução de Sinais
18.
IEEE J Biomed Health Inform ; 27(11): 5418-5429, 2023 11.
Artigo em Inglês | MEDLINE | ID: mdl-37578917

RESUMO

Deep learning has demonstrated great potential for objective diagnosis of neuropsychiatric disorders based on neuroimaging data, which includes the promising resting-state functional magnetic resonance imaging (RS-fMRI). However, the insufficient sample size has long been a bottleneck for deep model training for the purpose. In this study, we proposed a Siamese network with node convolution (SNNC) for individualized predictions based on RS-fMRI data. With the involvement of Siamese network, which uses sample pair (rather than a single sample) as input, the problem of insufficient sample size can largely be alleviated. To adapt to connectivity maps extracted from RS-fMRI data, we applied node convolution to each of the two branches of the Siamese network. For regression purposes, we replaced the contrastive loss in classic Siamese network with the mean square error loss and thus enabled Siamese network to quantitatively predict label differences. The label of a test sample can be predicted based on any of the training samples, by adding the label of the training sample to the predicted label difference between them. The final prediction for a test sample in this study was made by averaging the predictions based on each of the training samples. The performance of the proposed SNNC was evaluated with age and IQ predictions based on a public dataset (Cam-CAN). The results indicated that SNNC can make effective predictions even with a sample size of as small as 40, and SNNC achieved state-of-the-art accuracy among a variety of deep models and standard machine learning approaches.


Assuntos
Encéfalo , Imageamento por Ressonância Magnética , Humanos , Imageamento por Ressonância Magnética/métodos , Encéfalo/patologia , Aprendizado de Máquina , Interpretação de Imagem Assistida por Computador/métodos , Neuroimagem
19.
Brain Imaging Behav ; 17(6): 628-638, 2023 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-37553449

RESUMO

Quite a few studies have been performed based on movie-watching functional connectivity (FC). As compared to its resting-state counterpart, however, there is still much to know about its abilities in individual identifications and individualized predictions. To pave the way for appropriate usage of movie-watching FC, we systemically evaluated the minimum number of time points, as well as the exact functional networks, supporting individual identifications and individualized predictions of apparent traits based on it. We performed the study based on the 7T movie-watching fMRI data included in the HCP S1200 Release, and took IQ as the test case for the prediction analyses. The results indicate that movie-watching FC based on only 15 time points can support successful individual identifications (99.47%), and the connectivity contributed more to identifications were much associated with higher-order cognitive processes (the secondary visual network, the frontoparietal network and the posterior multimodal network). For individualized predictions of IQ, it was found that successful predictions necessitated 60 time points (predicted vs. actual IQ correlation significant at P < 0.05, based on 5,000 permutations), and the prediction accuracy increased logarithmically with the number of time points used for connectivity calculation. Furthermore, the connectivity that contributed more to individual identifications exhibited the strongest prediction ability. Collectively, our findings demonstrate that movie-watching FC can capture rich information about human brain function, and its ability in individualized predictions depends heavily on the length of fMRI scans.


Assuntos
Encéfalo , Conectoma , Humanos , Encéfalo/diagnóstico por imagem , Filmes Cinematográficos , Imageamento por Ressonância Magnética/métodos , Conectoma/métodos
20.
Heliyon ; 9(7): e18429, 2023 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-37519758

RESUMO

Ischemic stroke is the main reason of disability and mortality in many countries, and currently has limited treatments. The post-stroke inflammation characterized with microglia activation and polarization has been regarded as a promising therapeutic target for ischemic stroke. After ischemia, the activated microglia polarize to classical (M1) phenotype or alternative (M2) phenotype and exhibit biphasic function. Promoting microglia phenotype shift from deleterious M1 phenotype to neuroprotective M2 phenotype will be promising in stroke treatment. Increasing evidence indicates that the erythropoietin-producing human hepatocellular (Eph) receptor A4 (EphA4), a kind of abundant Eph receptor, distributes mainly in neuron and participates in multiple links of pathological changes after ischemia. This paper discussed the hypothesis that EphA4 receptor could affect ischemic brain injury through EphA4/ephrin bidirectional signaling between neuron and microglia, and then explored its underlying mechanisms. We manipulated EphA4/ephrin signaling with either EphA4 overexpression lentiviral vectors or the short hairpin RNA (shRNA) to upregulate or knock down neuronal EphA4 expression. NF-κB inhibitor pyrrolidine dithiocarbamate ammonium salt (PDTC) was applied to block NF-κB pathway. According to the experimental results, upregulated neuronal EphA4 induced by ischemia deteriorated neurological function as well as brain damage by shifting microglia M1-polarization via promoting NF-κB signaling.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...